US ERA ARCHIVE DOCUMENT

Climate Change Primer

Outline:

- 1. Projected changes for the PNW: overview
- 2. Climate variability vs. climate change
- 3. Global emissions to decision scales
 - How to get from (A) to (B)

Guillaume Mauger Climate Impacts Group, UW gmauger@uw.edu January 22-23, 2013

Projected Changes

Projected Global Temperature Change

Greenhouse gas Emissions Scenarios:

Combine different estimates of population growth, technology development, energy sources (e.g., fossil fuels vs. "green" energy), etc.

Slide adapted from Lara Whitely-Binder, CIG / UW

Source: IPCC, 2007

Projected Changes: PNW

- Significant warming for all seasons, especially summer
- Changes in Annual Precipitation are small compared to year-to-year variability.
- Wetter Falls, Winters, and Springs
- Drier Summers

(Figure shows change compared with 1970 - 1999 average).

Source: Mote, P.W., and E.P. Salathé, Climatic Change, 2010.

Washington Climate Change Impacts Assessment (WACCIA)

Salmon Impacted Across Full Life-Cycle

Projected Changes: Nooksack

Source: http://warm.atmos.washington.edu/2860/

Projected Changes: Nooksack

Climate Variability vs. Climate Change

"Climate change" will express itself in real time as a complex combination of variability plus any systematic trend.

"Bumpy Ride"

Nooksack Watershed

Annual averages.
A1B emissions scenario, BCSD downscaling.
Results from 7 GCMs.

Source: http://warm.atmos.washington.edu/2860/

Emissions Scenarios to Decision Tools

Emissions Scenarios to Decision Tools

Choosing Greenhouse Gas Emissions Scenarios

- No one emissions scenario is considered more likely than another.
- Choice of scenarios is in large part a function of risk management: are you risk tolerant vs. risk averse?

Note: Differences in scenarios - and thus changes in climate and related impacts - do not strongly diverge until after mid-21st century.

Emissions Scenarios to Decision Tools

Global Climate models (GCMs):

- GCMs break the world into large grid sizes (~60 to 180 miles) and model complex interactions within each grid cell.
- Today's GCMs are mostly "coupled", meaning that separate models for the land surface, ocean, sea ice, and atmosphere all interact.

NOAA

There is no one "best" model

the answer depends on your question...

source: Glecker et al., J. Geophys. Research, 2008.

Choosing GCMs combines both: *Evaluating needs, Tire kicking*

- 1. Are multiple scenarios and multiple GCMs needed for impacts modeling, or is an ensemble mean sufficient?
- 2. Do the models and emission scenarios selected match the risk framework (risk tolerant vs. risk averse)?
- 3. Do the models chosen have **good fidelity to 20**th **century observations** using a regional focus?
- 4. Is the spatial and temporal scale of the climate information appropriate to the intended use in planning or decision making?

Example: 18 GCMs

- 0. Use all models.
 - This requires the maximum time, effort, and resources, and is rarely a feasible option.

Example: 18 GCMs

- Modified from original image: www.psdgraphics.com
- 1. All models are equally plausible.
 - Average all models together = ensemble

Example: 18 GCMs

- 1. All models are equally plausible.
 - Average all models together = ensemble

2. All models are equally plausible, but we want to plan for a range of scenarios.

Select "bracketing" models

Warmest

Coolest

Example: 18 GCMs

- 1. All models are equally plausible.
 - Average all models together = ensemble

- 2. All models are equally plausible, but we want to plan for a range of scenarios.
 - Select "bracketing" models

- 3. Some models perform better than others.
 - Select best performing models for ensemble -

Filter models based on performance criteria: trend, pressure, means, etc

www.psdgraphics.com

4. Some models perform better than others.
• Select best performing models
• Use each model separately to obtain a range of projections

Filter 18 models based on performance criteria: trend, pressure, means, etc

(less warm)

Emissions Scenarios to Decision Tools

Scale and global land surface in climate models

Source: Strand, NCAR

(note: this is probably unrealistically optimistic...)

Downscaling Relates the "Large" to the "Small"

Global Climate Model Air Temperature

Figures: Eric Salathé

Emissions Scenarios to Decision Tools

Last step: Use a model to translate climate changes to changes in ecosystem and hydrologic variables

open wind profile canopy wind profile Precipitation Incoming Longwave Canopy Longwaye transmitted shortwave Sensible & Latent Outgoing Heat Longwave surface layer 4 pack layer Ground Heat Flux

incoming

VIC model overview

VIC snow model

Key Questions / Caveats

- Is more to be gained by finer downscaling? (A finer scale does not necessarily mean the projections are more realistic or better constrained).
- How does the scale of information match the detail of the ecosystem impact model being used?
- Does the range of futures from the climate model span the range of outcomes in the response?
 - e.g., losing a forest to fire is more drastic than warming by an extra 2°C